Sensitive Next-Generation Sequencing of HIV-1 in ASPIRE

Urvi Parikh, PhD
University of Pittsburgh

MTN Regional Meeting
Cape Town, SA, 26 Sept 2018
Dapivirine Intravaginal Ring (DPV IVR)

- Safe and effective to prevent HIV-1 infection in women
- Unlike tenofovir and FTC, DPV never used therapeutically
- Part of NNRTI class of drugs (same as NVP and EFV)
Risk of Resistance from DPV IVR Unknown

- Using DPV IVR during undetected acute infection
- Continuing DPV IVR after breakthrough infection
- Failure of DPV IVR to protect against partner with NNRTI resistant virus

SELECTED RESISTANCE

TRANSMITTED RESISTANCE
Look Carefully for Imbalance between Arms

Resistance in Dapivirine Arm

Resistance in Placebo Arm
Outline

• Methods used to detect HIV drug resistance

• Resistance objective in ASPIRE

• Preliminary Results
How HIV Drug Resistance is Measured

Sanger “Standard” Sequencing
Consensus of all HIV quasispecies in sample
≥20% detected

Next-Generation Sequencing (NGS)
Each virion individually sequenced
Thousands of sequences per sample
≥1% detected

Sample of HIV virions from plasma
Standard Sequencing Region

HIV Target Sequence

Protease
Codons 1 - 99

Full Length Reverse Transcriptase
Codons 1 - 560

Forward primer

Reverse primer
NGS Sequencing Region

Protease
Codons 1 - 99

Full Length Reverse Transcriptase
Codons 1 - 560

212 152 150

Mutations important for NNRTI resistance covered in this region

HIV Target Sequence
Principles of Sensitive NGS Assay

UMI = Unique Molecular Identifier
Unique tag for each HIV genome

HIV TARGET SEQUENCE

UMI

MiSeq Element
Needed for machine to read the sample

PTID ID
Allows multiplexing of samples

PTID ID

MiSeq Element
Principles of Sensitive NGS cont.

Thousands of sequences are generated per sample.

Sensitivity of resistance detection can be determined individually for each sample and depends on HIV recovery from sample.
Standard Genotyping vs NGS

<table>
<thead>
<tr>
<th>Standard Genotyping</th>
<th>NGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Region includes protease and full-length RT</td>
<td>Targeted gene region include part of RT important for NNRTI resistance</td>
</tr>
<tr>
<td>Long & shallow sequence read length</td>
<td>Short & deep sequence read length</td>
</tr>
<tr>
<td>One sequence per sample</td>
<td>Thousands of sequences per sample with each virus genome individually tagged</td>
</tr>
<tr>
<td>Detect mutations at 20% or greater</td>
<td>Detect mutations at 1% or greater</td>
</tr>
</tbody>
</table>
Objective

- To evaluate seroconverters in MTN-020 (ASPIRE) for evidence of HIV drug resistance associated with DPV ring use using standard genotyping and NGS.
HIV Diagnosis in ASPIRE

2 Rapid Tests

Western blot

HIV Diagnosis and Confirmation

One or two positive

- Product discontinuation
- Plasma collection for resistance testing
Plasma collected and stored after 1st positive rapid test. If confirmed positive...

- HIV RNA PCR
 - Performed at site
 - Results used for participant care

- Standard Genotype
 - Performed at Virology Core
 - Results returned to sites

- NGS
 - Performed at Virology Core
 - Research only – not for clinical care
Methods

Standard Genotyping

All seroconverters from both arms tested

NGS

<table>
<thead>
<tr>
<th>PHASE I</th>
<th>DPV ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>95 pg/ml plasma DPV</td>
</tr>
<tr>
<td></td>
<td>residual drug levels of <23 per 5 mg</td>
</tr>
<tr>
<td></td>
<td>at any follow up visit</td>
</tr>
</tbody>
</table>

PLB ARM: 1:1 random match

| PHASE II | Remaining specimens both arms |

Sample stored after first positive rapid tested
Results
Standard Genotyping

168 ASPIRE Seroconverters

165 (98%) Successfully Sequenced

69 DPV Ring Arm
96 Placebo Ring Arm

3 HIV RNA <200 c/mL
DPV-Associated NNRTI Mutations: Standard

Frequency among participants who acquired HIV-1 infection after enrollment while on study product

<table>
<thead>
<tr>
<th>Mutation*</th>
<th>PLB Ring N = 96</th>
<th>DPV Ring N = 68</th>
</tr>
</thead>
<tbody>
<tr>
<td>L100I</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K103N</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E138K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y181C</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

All differences were not significant between arms, p > 0.05

Based on in vitro selection and cross-resistance data from Schader SM et al. AAC 2012 and Fletcher P et al. AAC 2009
Other NNRTI Mutations: Standard

Among participants who acquired HIV-1 after enrollment while on study product

<table>
<thead>
<tr>
<th>Mutation</th>
<th>PLB Ring (N = 96)</th>
<th>DPV Ring (N = 68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V90I</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>K101E</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K103S</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V106M</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V108I</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E138A</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>E138G</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V179D</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>V179T</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H221Y</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

All differences were not significant between arms, p > 0.05
Full-length Analysis of RT

- No novel amino acid changes across all of RT were associated with seroconversion in the DPV arm
Standard Genotyping

NO DIFFERENCE

DPV RING ARM
8 of 69 (11.6%) with NNRTI mutations

PLB RING ARM
10 of 96 (10.4%) with NNRTI mutations
168 ASPIRE Seroconverters

123 Successfully Sequenced

62 DPV Ring Arm

61 Placebo Ring Arm

3 HIV RNA <200 c/mL
37 Not Selected for Testing*
5 Failed/Re-testing

*32 Placebo + 5 DPV ring non-adherent defined by low plasma drug levels or high residual ring levels
DPV-Associated NNRTI Mutations: NGS

Frequency among participants who acquired HIV-1 infection after enrollment while on study product

<table>
<thead>
<tr>
<th>Mutation</th>
<th>PLB Ring N = 61</th>
<th>DPV Ring N = 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>L100I</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K103N</td>
<td>0*</td>
<td>2</td>
</tr>
<tr>
<td>E138K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y181C</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*1 PTID with K103N identified by standard genotyping not yet sequenced by NGS

K103N at 100% for both PTIDs same as standard genotype

No new low frequency DPV-associated mutations detected.
Other NNRTI Mutations: NGS

Among participants who acquired HIV-1 after enrollment while on study product

<table>
<thead>
<tr>
<th>Mutation</th>
<th>PLB Ring (N = 61)</th>
<th>DPV Ring (N = 62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V90I</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>K101E</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>K103S</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>V106M</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>V108I</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>E138A</td>
<td>Note*</td>
<td></td>
</tr>
<tr>
<td>E138G</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>V179D</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>V179T</td>
<td>No difference</td>
<td></td>
</tr>
</tbody>
</table>

*1 new E138A at 9% frequency detected in 1 PTID from PLB Ring Arm
Any Amino Acid Differences in RT? (NGS)

1. Evaluate full gene region amino acids 80 – 212 in RT
2. Compare number of low-frequency mutants (1 - 20% frequency) at every position
3. Chi-square test to compare placebo vs dapivirine arm
Other Amino Acid Differences: NGS

No significant differences between arms
NGS

DPV RING ARM
0 of 62 (0%) with low-frequency NNRTI mutations

PLB RING ARM
1 of 61 (1.6%) with low-frequency NNRTI mutations
Summary

• NNRTI mutation frequency did not differ by arm (p > 0.05)

• DPV-associated mutations E138K, L100I or Y181C were not detected in ASPIRE by standard or sensitive sequencing.

• The polymorphism E138A was the most common mutation amongst seroconverters but its frequency did not differ by arm.
Conclusion

• DPV-associated resistance mutations were not detected in ASPIRE by standard or sensitive resistance analysis.

• The frequency of NNRTI mutations in seroconverters from ASPIRE did not differ by arm indicating that the NNRTI resistance was likely transmitted and not selected by DPV ring use.
Acknowledgements

University of Pittsburgh, Pittsburgh, Pennsylvania
Division of Infectious Diseases
John Mellors
Kerri Penrose
Amy Heaps
Kelley Gordon
Breanna Goetz
Kevin McCormick

Bioinformatics
Uma Chandran
Rahil Sethi
Jacob Waldman
William Schwarzmann

National Cancer Institute, Frederick, Maryland
Valerie Boltz
Mary Kearny
Wei Shao

Fred Hutchinson Cancer Research Institute, Seattle, Washington; Statistical Center for HIV/AIDS Research and Prevention (SCHARP)
Marla Husnik
Danny Szydlo
Haixiao Huang
Jason Pan
Sara Aranda
Jennifer Berthiaume
Karen Patterson

The Microbicide Trials Network is funded by the National Institute of Allergy and Infectious Diseases (UM1AI068633, UM1AI068615, UM1AI06707), with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Institute of Mental Health, all components of the U.S. National Institutes of Health.
MTN-020/ASPIRE Study Team

MTN-020/ASPIRE leadership: Jared M. Baeten (protocol chair), Thesla Palanee-Phillips (protocol co-chair), Elizabeth R. Brown (protocol statistician), Katie Schwartz (FHI 360 senior clinical research manager), Lydia E. Soto-Torres (DAIDS medical officer)

Study sites:

- **Malawi**: Blantyre site (Malawi College of Medicine-John Hopkins University Research Project): Bonus Makanani, Taha E. Taha
- **Malawi**: Lilongwe site (University of North Carolina Project): Francis Martinson
- **South Africa**: Cape Town site (University of Cape Town): Linda-Gail Bekker
- **South Africa**: Durban eThekwini site (Centre for AIDS Programme of Research in South Africa): Gonasagrie Nair
- **South Africa**: Durban – Botha’s Hill, Chatsworth, Isipingo, Tongaat, Umkomaas, Verulam sites (South African Medical Research Council): Vaneshree Govender, Samantha Siva, Nitesha Jeenarain, Zakir Gaffoor, Arendevi Pather, Logashvari Naidoo, Gita Ramjee
- **South Africa**: Johannesburg site (Wits Reproductive Health and HIV Institute): Thesla Palanee-Phillips
- **Uganda**: Kampala site (Makerere University-Johns Hopkins University Research Collaboration): Flavia Matovu Kiweewa, Clemensia Nakabiito
- **Zimbabwe**: Chitungwiza-Seke South, Chitungwiza-Zengeza, Harare-Spilhaus sites (University of Zimbabwe-University of California San Francisco Collaborative Research Program): Nyaradzo M. Mgodi, Felix Mhlanga, Zvavahera M. Chirenje

Microbicides Trials Network Laboratory Center (Magee-Womens Research Institute, University of Pittsburgh, Johns Hopkins University): Craig W. Hendrix, Edward Livant, Mark A. Marzinke, John W. Mellors, Urvi M. Parikh

Microbicides Trials Network Statistical and Data Management Center (Fred Hutchinson Cancer Research Center): Elizabeth R. Brown, Jennifer Berthiaume, Marla Husnik, Karen Patterson, Barbra A. Richardson, Daniel W. Szydlo

International Partnership for Microbicides: Zeda Rosenberg, Annalene Nel

MTN-020/ASPIRE participants and their communities; MTN-020 Community Working Group; MTN-020 Study Monitoring Committee; DAIDS MNDSMB