Statistical Considerations
The Use of Mucosal Assays in Microbicide Trials
August 25, 2015

Barbra Richardson, Ph.D.
Department of Biostatistics, University of Washington
Statistical Center for HIV/AIDS Research & Prevention
Seattle, WA, USA
Outline

- **Design issues:**
 - Hypotheses
 - Sampling
 - Sample size/Power

- **Analysis issues:**
 - Statistical Analysis Plan
 - Multiple Comparisons
 - Dimension Reduction
Design Issues - Hypotheses

- Mucosal assay results in microbicide trials
 - Generally secondary or exploratory endpoints
 - Still deserve well defined hypotheses
 - Numerous hypotheses (this is ok)

- A priori: Why do we care about these assay results and what are the hypotheses regarding them?
Timing of sampling and your hypotheses

- Baseline sampling
 - hypotheses re: within participant changes

- Longitudinal sampling
 - Sampling frequency, timing addresses hypotheses
 - Acute versus chronic exposure to microbicide
Mucosal assay results in microbicide trials usually limited by available sample size

Generally 5 relevant variables:
- Sample size
- False positive rate (α) – 0.05
- Power (1-false negative rate) – 80% or 90%
- Magnitude of effect size (hypothesized)
- VARIABILITY!
Design Issues – Variability

- Variability
 - Within assay (noise)
 - Within participant
 - Between participant
Design Issues – Variability

- Within assay variability (noise)
 - Consider 3 replicates of one sample

<table>
<thead>
<tr>
<th>Assay</th>
<th>Replicate 1</th>
<th>Replicate 2</th>
<th>Replicate 3</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>100</td>
<td>90</td>
<td>49</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>60</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

- Assay A will require much larger sample size than assay B to discern a similar magnitude of difference
Analysis Issues – Statistical Analysis Plan

- Statistical analysis plan includes at minimum
 - Hypotheses
 - Endpoints
 - Analysis population description
 - Statistical methods
 - Transformation of variables – Normality or categorization (lower limit of detection)
 - Statistical tests to be used
 - Potential covariates
 - Methods for accounting for multiple comparisons
Analysis Issues – Multiple Comparisons 101

<table>
<thead>
<tr>
<th>DECISION</th>
<th>TRUTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₀ True</td>
</tr>
<tr>
<td>Do Not Reject H₀</td>
<td>CORRECT 1-α</td>
</tr>
<tr>
<td>Reject H₀</td>
<td>INCORRECT β</td>
</tr>
</tbody>
</table>

- **H₀ True**
 - **Do Not Reject H₀**: CORRECT 1-α
 - **Reject H₀**: INCORRECT β (false positive)

- **H₀ False**
 - **Do Not Reject H₀**: INCORRECT β (false negative)
 - **Reject H₀**: CORRECT 1-β (power)
Want to control probability of a false positive result (α)

![Graph showing the relationship between the number of hypothesis tests and the probability of a false positive result.](image)
Analysis Issues – Multiple Testing Methods

I can’t live with ANY false positive results!

- Methods that control the “Family Wise Error Rate” (FWER) = Pr(at least one false positive)
 - Single step
 - Bonferroni: reject any hypothesis with p-value ≤ α/m (m is number of tests)
 - Too conservative – high probability of false negative results
 - Sequential
 - Holm’s Method, Simes’ Method, others
 - Different criteria for magnitude of p-value rejected
 - Choice depends on correlation of hypothesis tests as well as other factors
Analysis Issues – Multiple Testing Methods

I can live with some false positive results…..

- Methods that control the “False Discovery Rate” (FDR) = proportion of false positives among the set of rejected hypotheses
 - Strive to keep the FDR below a threshold “q” – defined as the q-value
 - Benjamini and Hochberg FDR
 - Storey’s positive FDR (pFDR)
Analysis Issues – Multiple Testing Methods

False Discovery Rate (FDR) versus False Positive Rate (FPR)

<table>
<thead>
<tr>
<th>DECISION</th>
<th>TRUTH</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₀ True</td>
<td>H₀ False</td>
</tr>
<tr>
<td>Call H₀</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>True (do not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reject)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call H₀</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>False (reject)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>25</td>
</tr>
</tbody>
</table>

FDR = 20% (5/25)

FPR = 5% (5/100)
Analysis Issues – Dimension Reduction

- Numerous mucosal assay outcome variables
 - Are there some variables that cluster together to mark a similar underlying biological mechanism?

- Methods for reducing dimension (combining variables)
 - Principal components analysis
 - Linear discriminant analysis
 - Canonical correlation analysis
 - Others
Example: MTN 004 MTN BSWG Analyses (Pellett Madan, et al, 2015)
- 61 women with 4 visits (baseline, 7 days, 14 days and 21 days)
- IL-1β, IL-6, IL-12p40, MIP-1α, GM-CSF, lactoferrin and SLPI from cervical swabs

Soluble immune mediator score created using factor analysis with principal components extraction
Analysis Issues – Dimension Reduction

- Example: MTN 004 MTN BSWG Analyses (Pellett Madan, et al, 2015)

 - Soluble immune mediator score created using factor analysis with principal components extraction
 - Score used in analyses to see if it was predictive of subsequent endogenous activity against *E. coli*
 - Dimension reduced from 7 hypothesis tests (7 separate assay results) to 1 (score) – probability of at least one false positive reduced from ~30% to 5%
Conclusions

- **Design:**
 - If possible build mucosal assays into study design up front
 - Timing of sampling
 - Sample size/Power
 - DRIVEN BY HYPOTHESES! *A priori*: Why do we care about these assay results and what are the hypotheses regarding them?
Conclusions

- Analysis:
 - Statistical Analysis Plan
 - Multiple testing procedures
 - Possibility of dimension reduction?
 - DRIVEN BY HYPOTHESES! *A priori*: Why do we care about these assay results and what are the hypotheses regarding them?
Acknowledgments

- Fred Hutchinson Cancer Research Center
 - Elizabeth Brown
 - Raphael Gottardo
Design Issues – Sampling Noise

- “Noisy” assays
 - Separate signal from noise
 - Baseline sampling
 - Placebo sampling
Design Issues – Variability

- Within participant variability
 - Consider data on two participants from 3 timepoints for a particular assay

<table>
<thead>
<tr>
<th>Participant</th>
<th>Time 1</th>
<th>Time 2</th>
<th>Time 3</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>10</td>
<td>100</td>
<td>90</td>
<td>49</td>
</tr>
<tr>
<td>Y</td>
<td>40</td>
<td>60</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

- Participant X’s assay results are much more variable over time than participant Y’s. Harder to see a smaller signal in participants like X.