The Use of Mucosal Assays in Microbicide Trials

Integrating PK/PD

Nicola Richardson-Harman Ph.D
President
Alpha StatConsult

Key Bridge Marriott, Arlington, VA
August 25-26, 2015
Placebo/baseline (untreated) ex vivo p24 data from:

- 17 data sets, 10^4 TCID$_{50}$ HIV-1 BaL
- 4 Labs: Pitt, UCLA, CONRAD, Imperial
- 3 tissue types: rectal, cervical, vaginal
- 9 studies: UC781, Tenofovir, FAME01, FAME02, CHARM01, MTN013, CONRAD, MWRI01, Fox
- 700 tissue explants: 13% cervical, 72% rectal and 16% vaginal
- Coded C1-C4 (cervical), R1-R8 (rectal) and V1-V5 (vaginal).
Comparison of Imputation Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Replace non-detectable with values....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z (current)</td>
<td>$\frac{1}{2}$ LLOQ/LOD</td>
</tr>
<tr>
<td>A</td>
<td>Predicted from a non-linear mixed model</td>
</tr>
<tr>
<td>B</td>
<td>Predicted from (i) model of growth curve then (ii) non-linear mixed model</td>
</tr>
<tr>
<td>C</td>
<td>Predicted iteratively from model of growth curve and non-linear mixed model</td>
</tr>
</tbody>
</table>
Comparison of Imputation Methods

<table>
<thead>
<tr>
<th>Experiment</th>
<th><500 SSI</th>
<th>≥ 500 SSI</th>
<th>Different to Z (P < 0.05)</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>A,B and C</td>
<td>Z</td>
<td>A,B and C</td>
<td>Z-A-B-C</td>
</tr>
<tr>
<td>R2</td>
<td>A,B and C</td>
<td>Z</td>
<td>A,B and C</td>
<td>Z-A-B-C</td>
</tr>
<tr>
<td>R4</td>
<td>A,B and C</td>
<td>Z</td>
<td>A,B and C</td>
<td>Z-A-B-C</td>
</tr>
<tr>
<td>R7</td>
<td>A,B and C</td>
<td>Z</td>
<td>A,B and C</td>
<td>Z-A-B-C</td>
</tr>
</tbody>
</table>

Move forward with Method A
Rectal Ex vivo Challenge

R1
Bx n=56

R2
Bx=112

R3
Bx=9

R4
Bx=30

R5
Bx=127

R6
Bx=14

R7
Bx=144

R8
Bx=10

Rectal Curves
Bx=502
Cervical Ex vivo Challenge

Cervical Curves

- C1: Bx=28
- C2: Bx=30
- C3: Bx=24
- C4: Bx=6
- Cervical Curves: Bx=88

Graphs showing changes in Log_{10} p24 pg/mL over days.
Vaginal *Ex vivo* Challenge

<table>
<thead>
<tr>
<th>V1</th>
<th>Bx=29</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2</td>
<td>Bx=30</td>
</tr>
<tr>
<td>V3</td>
<td>Bx=24</td>
</tr>
<tr>
<td>V4</td>
<td>Bx=19</td>
</tr>
<tr>
<td>V5</td>
<td>Bx=8</td>
</tr>
</tbody>
</table>

Vaginal Curve
Bx=110

Log₁₀ p24 pg/mL vs. Day for different batches (V1 to V5)
Ex vivo Growth Across Tissue Types and Implications for Experimental Design

last Day Rectal p24 N

<table>
<thead>
<tr>
<th>Last Day</th>
<th>Rectal p24</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>5248</td>
<td>4</td>
</tr>
<tr>
<td>15 (R6 only)</td>
<td>1479</td>
<td>6</td>
</tr>
</tbody>
</table>

last Day Cervical p24 N

<table>
<thead>
<tr>
<th>Last Day</th>
<th>Cervical p24</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1318</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>21878</td>
<td>19</td>
</tr>
</tbody>
</table>

last Day Vaginal p24 N

<table>
<thead>
<tr>
<th>Last Day</th>
<th>Vaginal p24</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1514</td>
<td>24</td>
</tr>
<tr>
<td>21</td>
<td>9120</td>
<td>10</td>
</tr>
</tbody>
</table>

p24 = geometric mean cumulative p24 pg/ml.

N = no. of tissues samples needed, per treatment group, to find a one log difference in p24 to be significant ($p<0.05$) with 80% power.
Integrating PK/PD

PD
Determine PD endpoint (e.g. cumulative p24), log transform.

PK
Determine dose endpoint (e.g. concentration, Cmax, AUC), log transform.

Integrate PK/PD
Pair contemporaneous PK/PD measurements (same subject/time)
Linear mixed model, is slope sig?

- **yes**
 - Non-linear model, calculate % virus control, EC_{50}.
- **no**
 - No PK/PD relationship
Integrating PK/PD in Rectal Tissue: 2 steps

A Compartmental Pharmacokinetic and Pharmacodynamic Assessment of Rilpivirine LA Pre-Exposure Prophylaxis in HIV-Negative Volunteers

Acknowledgements

Analyses were performed by Dr. Robert Parody and Dr. Nicola Richardson-Harman, Alpha StatConsult.

Dr. Charlene Dezzutti is the scientific advisor for this work.

This work was funded by NIH/NIAID/DAIDS contract: “Comprehensive Resources for HIV Microbicides and Biomedical Prevention” (#HHSN272201000001C). Advanced Bioscience Laboratories, Rockville MD.

Data were provided by the following PIs:

Dr. Peter Anton, UCLA
Dr. Charlene Dezzutti, Magee Women Research Institute and University of Pittsburgh School of Medicine
Dr. Ian McGowan, University of Pittsburgh School of Medicine
Dr. Kathy Kordy, UCLA
Dr. Annie Thurman, CONRAD
Dr. Carolina Herrera and Dr. Julie Fox, Imperial College

All study participants are thanked for volunteering their time.