HIV-1 Prevention and the Potential for Antiretroviral Resistance

John Mellors, MD
Urvi Parikh, PhD
Outline

• Quick refresher on resistance
 – Principles, types, major vs. minor

• What have we learned in the last year and what do we still need to learn?
 – About resistance from oral or topical PrEP?

• Focus on resistance to NNRTIs
 – General features
 – Dapivirine and dapivirine ring (MTN-020)
Resistance Refresher: Principles

• HIV-1 can develop resistance to any ARV
 – If it’s any good as an inhibitor of replication
• HIV-1 replication + drug = resistance
• No replication (3 drug ART) = no resistance
• Remove drug, resistance decays but…
 – Depends on mutation and drug
 – 184V (3TC/FTC) = fast vs. 103N (NNRTI) = slow
Types of Resistance

• Transmitted Resistance
 – Person is infected with resistant virus
 ▪ Never exposed to ARVs
 ▪ Partner rec’d ART, sdNVP or PrEP
 ▪ Or, partner infected with resistant virus from a
 another partner: a “secondary” transmission

• Selected Resistance (most common)
 – Infected with wildtype virus
 – Resistance selected by sdNVP, ART, or PrEP
Major vs. Minor Resistance

• Major
 – ≥ 25% of virions in a person are resistant
 – detected by standard population genotype

• Minor
 – < 25% of virions in a person are resistant
 – missed by standard genotype
 – detected by ASP, SGS, deep sequencing
What Have We Learned in 1 Year?

• No infection on PrEP, no resistance 😊
 – CAPRISA, iPrEX, TDF2, Partners PrEP

• No PrEP exposure, rare resistance but infection 😞
 – iPrEX, TDF2, Partners PrEP, FEM-PrEP
HIV-1 Drug Resistance from PrEP

• Infrequent cases of drug resistance among PrEP study participants who seroconverted while receiving active drug

<table>
<thead>
<tr>
<th>Study</th>
<th>Infections on Study</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># infected</td>
<td># resistant to FTC or TDF</td>
<td></td>
</tr>
<tr>
<td>iPrEx</td>
<td>131</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Partners PrEP</td>
<td>82</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>TDF2</td>
<td>33</td>
<td>1 placebo (K65R <1%)*</td>
<td></td>
</tr>
</tbody>
</table>
| FEM-PrEP | 68 | 1 placebo (M184V)*
 | | 4 FTC/TDF (M184V/I)** |

* Transmitted (primary) resistance can occur independent of PrEP, which likely explains resistance in the placebo arm

** 1 probable and 2 possible transmitted resistance; 1 uncertain timing of infection (HIV RNA detectable at first follow-up visit)
Infrequent Drug Resistance

• Why?
 – Risk of infection and drug exposure are inversely related
 – No or low drug exposure, no selection by drug, no resistance, but infection
 – Good exposure → no infection & no resistance

• Resistance is still possible
 – At drug exposures that permit infection but also provide selection of resistant variants
 – Appears to be uncommon
Theoretical Infection-Exposure-Resistance Relationships

- No Drug
- No Resistance
- Infection

Fraction infected or resistant

Drug Exposure

- HIV infection
- Resistant infection

Low High
Theoretical Infection-Exposure-Resistance Relationships

- No Drug
- No Resistance
- Infection
Theoretical Infection-Exposure-Resistance Relationships

- No Drug
- No Resistance
- No Infection

Drug Exposure

Fraction infected or resistant

- Low
- High

Zone of Resistance Risk

HIV infection

Resistant infection
What Have We Learned in 1 Year?

• Resistance more likely if PrEP given during unrecognized acute infection
 – iPrEX, TDF2, Partners PrEP, FEM-PrEP
Resistance More Likely if PrEP is Given During Unrecognized Acute Infection

<table>
<thead>
<tr>
<th>Study</th>
<th>Baseline infections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># infected</td>
</tr>
<tr>
<td>iPrEx</td>
<td>10</td>
</tr>
<tr>
<td>Partners PrEP</td>
<td>14</td>
</tr>
<tr>
<td>TDF2</td>
<td>3</td>
</tr>
<tr>
<td>FEM-PrEP</td>
<td>2</td>
</tr>
</tbody>
</table>

Infection + incomplete suppression of replication selects resistance Transmitted (primary) resistance can occur, independent of PrEP, which likely explains resistance in the placebo arm
What Have We Learned (con’t)

- Topical PrEP (TNV gel), no systemic resistance
 - CAPRISA 004
 - No major or minor resistance
 - Relevant for MTN-020 (dapivirine ring)
What Have We Learned (con’t)

• Resistance from ART is common
 – 15-20% of first-line therapy
 – Evidence of spread: prevalence pretherapy has increased in some countries from <5% to >12%
 – Uganda, Cameroon
Hamers et al., Lancet Infectious Dis 2011
What do we need to Learn?

• What level of PrEP exposure, if any, results in infection + resistance?
• What is the significance of minor resistance
 – Thought we knew but…
A5208 Trial 1 (sdNVP): Risk of Failure vs. Mutation Frequency by Allele-Specific PCR

HIV Drug Resistance Program
National Cancer Institute at Frederick

Boltz et al. PNAS 2011
A5208 Trial 2 (no sdNVP): No Increased Risk of Failure vs. Mutation Frequency by Allele-Specific PCR in the NVP Arm

<table>
<thead>
<tr>
<th>Mutant Frequencies</th>
<th>Percent of Patients Failing</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>no mutation</td>
<td>9/63</td>
<td>31/180</td>
<td></td>
</tr>
<tr>
<td>0.1 to <1%</td>
<td>5/18</td>
<td>6/21</td>
<td></td>
</tr>
<tr>
<td>1% to 10%</td>
<td>8/18</td>
<td>2/13</td>
<td></td>
</tr>
<tr>
<td>>10%</td>
<td>8/15</td>
<td>0/5</td>
<td></td>
</tr>
</tbody>
</table>

p-values:
- p=1.0
- p=1.0
- p=0.233
Not All Minor Resistance is the Same

• Minor drug resistance after sdNVP is associated with increased risk of failure of NVP-containing ART
• Spontaneous, pre-existing resistance is not
• So, if we detect minor resistance in a person with uncertain prior drug exposure (e.g. PrEP), we don’t know its significance
 – Working on additional ways to distinguish risk
NNRTIs and NNRTI Resistance
General Characteristics of NNRTIs

- Hydrophobic (water fearing) molecules
- Bind to a hydrophobic “grease pit” in HIV-1 RT near the catalytic site called the NNRTI binding pocket
- Inhibit RT function by multiple mechanisms
 - Distort the active site
 - Alter primer binding
 - Freeze RT in the open (non-catalytic) position
Structure of HIV-1 Reverse Transcriptase

- Pol Active Site
- RNase H Active Site
- NNRTI Binding Pocket
FDA-approved NNRTIs

• First generation
 – Delavirdine, Nevirapine, Efavirenz

• Second generation
 – Etravirine (TMC-125), Rilpivirine (TMC-278)
Structures of FDA-approved NNRTI

Nevirapine

Etravirine

Delavirdine

Efavirenz

Rilpivirine
Multiple NNRTI Resistance Mutations

Johnson et al., IAS USA 2011
General Features of NNRTI Resistance

• The “grease pit” is not conserved
• Mutations decrease NNRTI binding
 – Direct loss of hydrophobic interaction (Y181C)
 – Closing of entry to the pit (K103N)
 – Steric hindrance (G190E)
• Some mutations have minimal effect on fitness
 – May persist after drug is withdrawn (K103N)
• Cross-resistance is common among NNRTI
 – Extensive for 1st generation
 – Less between 1st & 2nd generation but still problematic
Dapivirine is an analog of ETV and RIL and binds to the same pocket. Figure shows overlay of the 3 drugs
<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical structure</th>
<th>EC$_{50}$ in µM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wild-type</td>
<td>K103N</td>
</tr>
<tr>
<td>TMC278</td>
<td>0.0004</td>
<td>0.0003</td>
</tr>
<tr>
<td>TMC125</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>TMC120</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>0.001</td>
<td>0.039</td>
</tr>
<tr>
<td>Delavirdine</td>
<td>0.016</td>
<td>>1</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>0.085</td>
<td>>1</td>
</tr>
</tbody>
</table>

Das et al. PNAS 2008
Dapivirine (TMC-120) Ring

• **Advantages**
 – Very potent inhibitor of HIV-1 ($EC_{50} = 1 \text{ nM}$)
 – Local delivery, so systemic resistance unlikely
 – Very high local concentrations may inhibit resistance development as well as NNRTI-resistant HIV-1 that comes from an infected partner
Dapivirine (TMC-120) Ring

- **Potential limitations**
 - Not active against high-level NNRTI resistant variants from a source partner
 - Uncommon now but could increase
 - Selection of resistance in the GT of INFECTED women
 - Theoretically transmissible
 - Resistance likely to be minor so more difficult to detect
 - MTN Virology Core will be prepared!
Take Home Messages

• Don’t give PrEP (Dapivirine Ring) to HIV+’s
 – Screen carefully for acute infection

• Look hard for minor drug resistance among seroconverters in MTN-020/ASPIRE
 – Comparisons with placebo arm are key

• Monitor prevalence of NNRTI resistance in ART- naïve and -experienced persons in RLS
 – Transmission of NNRTI-resistant virus is likely to increase
 – Potential for dapivirine ring breakthrough exists
Acknowledgments

U of Pittsburgh
Francis Hong
Elias Halvas
Nic Sluis-Cremer

NCI
Valerie Boltz
John Coffin
Mary Kearney

Harvard School of Public Health
Evelyn Zheng
Michael Hughes

The women in Africa who participated in A5208 and the 10 study sites
Any Questions?