Flow Cytometric Analysis of Gut Biopsies

Ian McGowan MD PhD FRCP
University of Pittsburgh
Pittsburgh, PA
USA
Overview

- GALT flow cytometry
- GALT flow data from completed studies
 - MTN studies
 - Non-MTN studies
- Lessons learned and questions for the future
GALT Flow Cytometry
GALT Flow Cytometry

- GALT flow cytometry increasingly used to characterize mucosal cell populations in:
 - HIV pathogenesis studies
 - Evaluation of HIV vaccine responses
 - PreP studies
 - Non-HIV related fields such as inflammatory bowel disease research

- Primary approach is to collect biopsies and to mechanically/enzymatically disassociate into single cells
GALT Flow Data
GALT Flow Data (1)

- **HPTN-056**
 - No intervention

- **RMP-01**
 - UC781 gel (Phase 1)

- **RMP-02 / MTN-006**
 - TFV gel & oral (Phase 1)

- **MTN-007**
 - TFV gel (Phase 1)

- **CHARM-01**
 - TFV gel (Phase 1)

- **HVTN-MIG study**
 - No intervention

- **MTN-017**
 - TFV gel/oral (Phase 2)

- **CHARM-03**
 - Maraviroc gel & oral (Phase 1)

- **HPTN-069**
 - Oral TFV, MVC, FTC (Phase 2)
GALT Flow Data (2)

- **ACTG 5330 (Multi-center)**
 - The effect of isotretinoin on immune activation among HIV-1-infected subjects with incomplete CD4+ T cell recovery

- **Dipyridamole (DP) study (Single center)**
 - The effect of DP on HIV-associated immune activation and inflammation

- **ACTG 5341s (Multi-center)**
 - Size and decay of HIV-1 reservoirs in tissues
HPTN-056

- **Population**
 - HIV-negative (N=8)
 - HIV-positive (N=8)

- **Center(s)**
 - Single

- **Sampling**
 - Colon
 - 10 cm and 30 cm
 - BL, +2/52, +4/52

- **Panel**
 - CD3, CD4, CD8, CD45,
 - HLA-DR, CD38,
 - CXCR4, CCR5, DC-SIGN
 - CD19
 - CD16, CD56

McGowan et al. JAIDS 2007
HPTN-056 ICC Scores

McGowan et al. JAIDS 2007
RMP-01

- Population
 - HIV-negative (N=36)

- Center(s)
 - Single

- Sampling
 - Colon
 - 10 cm and 30 cm
 - BL, post single dose, and post seven doses

- Products (1:1:1)
 - UC781 gel (0.1%)
 - UC781 gel (0.25%)
 - HEC placebo

- Panel
 - CD4, CD8, CD45, HLA-DR, CD38
 - CXCR4, CCR5

RMP-01

- Single dose
 - UC781 (0.1%) vs HEC (p >0.05)
 - UC781 (0.25%) vs HEC (p >0.05)

- 7 day exposure
 - UC781 (0.1%) vs HEC (p >0.05)
 - UC781 (0.25%) vs HEC
 - CCR5 RFI on CD4 (p = 0.025)
 - CCR5/CXCR4 on CD4 (p = 0.020)

RMP-02 / MTN-006

- Population
 - HIV-negative (N=18)

- Center(s)
 - 2 sites
 - Samples shipped to UCLA for analysis

- Sampling
 - Colon (15 cm)
 - BL, post single dose, and post seven doses

- Products (2:1)
 - TFV gel (1%)
 - HEC placebo

- Panel
 - CD4, CD8, CD45,
 - HLA-DR, CD38
 - CXCR4, CCR5

Anton PA et al. AIDS Res Hum Retroviruses 2012
RMP-02 / MTN-006

<table>
<thead>
<tr>
<th></th>
<th>Oral</th>
<th>Single</th>
<th>7 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>P values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD3+ on CD45+</td>
<td>0.20</td>
<td>0.90</td>
<td>0.32</td>
</tr>
<tr>
<td>CD4+ on CD45+</td>
<td>0.46</td>
<td>0.75</td>
<td>0.20</td>
</tr>
<tr>
<td>CD8+ on CD45+</td>
<td>0.08</td>
<td>0.44</td>
<td>0.71</td>
</tr>
<tr>
<td>CD38+ on CD4+</td>
<td>0.72</td>
<td>0.37</td>
<td>0.86</td>
</tr>
<tr>
<td>CD38 RFI on CD4+</td>
<td>0.76</td>
<td>0.42</td>
<td>0.81</td>
</tr>
<tr>
<td>HLA- DR+ on CD4+</td>
<td>0.53</td>
<td>0.92</td>
<td>0.84</td>
</tr>
<tr>
<td>HLA- DR+ CD38+ on CD4+</td>
<td>0.26</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>CCR5+ on CD4+</td>
<td>0.15</td>
<td>0.29</td>
<td>0.94</td>
</tr>
<tr>
<td>CCR5 RFI on CD4+</td>
<td>0.13</td>
<td>0.45</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Anton PA et al. AIDS Res Hum Retroviruses 2012
MTN-007

- **Population**
 - HIV-negative (N=60)

- **Center(s)**
 - 3 centers
 - Samples shipped to Pittsburgh

- **Sampling**
 - Anoscopic
 - Flex sig (15 cm)
 - BL, post SD, and post 7D

- **Products (1:1:1:1)**
 - TFV gel (1.0%)
 - N9 gel (2.0%)
 - HEC placebo
 - No Rx

- **Panel**
 - CD3, CD4, CD8, CD45,
 - CD69
 - CXCR4, CCR5

7 doses of TFV gel versus HEC gel associated with a significant increase in CD45+/CD3+ cells isolated from Flex sig biopsies (57% versus 42.8%; p = 0.04)
CHARM-01

- Population
 - HIV-negative (N=14)

- Center(s)
 - 2 centers
 - Samples shipped to Pittsburgh

- Sampling
 - Flex sig (15 cm)
 - BL, and post 7D of each formulation

- Products (crossover)
 - TFV gel (1.0%)
 - RG TFV gel (1.0%)
 - RS TFV gel (1.0%)

- Panel
 - CD3, CD4, CD8, CD45,
 - CD69
 - CXCR4, CCR5

CHARM-01

<table>
<thead>
<tr>
<th>Flow parameter</th>
<th>Enrollment(n = 14) Mean (SD), Median (25%, 75%)</th>
<th>Mean at 7th Dose N, Mean (SD), Median (25%, 75%)</th>
<th>Change at 7th Dose(n = 13) Mean (SE)</th>
<th>P value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>% CD3<sup>+</sup> from CD45<sup>+</sup></td>
<td>44.4 (17.4), 47.2 (34.6, 58.9)</td>
<td>11, 53.8 (16.4), 54.8 (46.9, 66.2)</td>
<td>12.23 (5.89)</td>
<td>0.0380</td>
</tr>
<tr>
<td>Enrollment vs. RF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment vs. HEC/VF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CXCR4<sup>+</sup> from CD4<sup>+</sup></td>
<td>71.5 (16.1), 70.3 (57.9, 84.5)</td>
<td>12, 61.1 (23.2), 61.4 (55.0, 79.5)</td>
<td>-10.68 (5.40)</td>
<td>0.0480</td>
</tr>
<tr>
<td>Enrollment vs. HEC/VF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change at 7th Dose (RGVF v HEC/VF)</td>
<td></td>
<td></td>
<td></td>
<td>0.0142</td>
</tr>
<tr>
<td>% CD69<sup>+</sup> from CD4<sup>+</sup></td>
<td>83.4 (6.0), 83.9 (80.4, 87.4)</td>
<td>12, 80.5 (4.9), 82.3 (78.7, 83.5)</td>
<td>-2.27 (0.97)</td>
<td>0.0188</td>
</tr>
<tr>
<td>Enrollment vs. HEC/VF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CXCR4<sup>+</sup> and CCR5<sup>+</sup> from CD4<sup>+</sup></td>
<td>55.6 (11.9), 55.1 (43.8, 66.2)</td>
<td>12, 45.4 (15.9), 48.7 (41.2, 53.9)</td>
<td>-10.16 (4.20)</td>
<td>0.0157</td>
</tr>
<tr>
<td>Enrollment vs. HEC/VF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change at 7th Dose (RGVF v HEC/VF)</td>
<td></td>
<td></td>
<td></td>
<td>0.0049</td>
</tr>
<tr>
<td>% CXCR4<sup>+</sup> from CD8<sup>+</sup></td>
<td>51.2 (17.1), 47.8 (40.2, 68.1)</td>
<td>12, 39.3 (18.8), 38.3 (33.9, 54.2)</td>
<td>-13.38 (4.58)</td>
<td>0.0035</td>
</tr>
<tr>
<td>Enrollment vs. HEC/VF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CD69<sup>+</sup> from CD8<sup>+</sup></td>
<td>85.7 (6.1), 84.7 (82.1, 90.5)</td>
<td>13, 71.4 (26.6), 80.2 (78.1, 84.3)</td>
<td>-13.54 (6.17)</td>
<td>0.0283</td>
</tr>
<tr>
<td>Enrollment vs. RGVF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change at 7th Dose (RF v RGVF)</td>
<td></td>
<td></td>
<td></td>
<td>0.0336</td>
</tr>
<tr>
<td>% CXCR4<sup>+</sup> and CCR5<sup>+</sup> from CD8<sup>+</sup></td>
<td>43.2 (13.1), 42.5 (35.6, 48.0)</td>
<td>12, 31.5 (13.8), 34.0 (29.1, 37.7)</td>
<td>-12.51 (3.66)</td>
<td>0.0006</td>
</tr>
<tr>
<td>Enrollment vs. HEC/VF D7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HVTN-MIG

- Feasibility of multi-site flow cytometric processing of GALT samples
- Clinical sites
 - UCLA (N = 18)
 - Pittsburgh (N = 17)
- Samples
 - PBMC, qPBMC, MMC
- Flow analysis
 - Fred Hutchinson CRC

qPBMC Data

MMC Data

MIG Summary

- Ranges for qPBMC CD4/CD8 equivalent at both sites
- Significant differences for the majority of other parameters
- Standardized protocols can reduce but not eliminate variability between sites
- HSV seropositivity influences T cell phenotype
- FMO not routinely required
Lessons Learned
Lessons Learned

- GALT flow cytometry is challenging and variable
- Cryopreservation and centralized analysis may provide more stable data
- Unclear whether flow cytometry routinely required in microbicide studies
- Further data may clarify the situation
 - MTN-017, HPTN-069, CHARM-03
Future Questions
Future Questions

- What studies require flow cytometry?
- What panels should be included?
- Multi-center studies
 - Should sample processing/staining and/or analysis be centralized?
 - Could cryopreservation of tissue samples or isolated MMC lead to more robust data?
Acknowledgements

The Microbicide Trials Network is funded by the National Institute of Allergy and Infectious Diseases (UM1AI068633, UM1AI068615, UM1AI106707), with co-funding from the National Institute of Child Health and Human Development and the National Institute of Mental Health, all components of the U.S. National Institutes of Health.