Hormonal contraception and HIV Risk: Evidence and Unknowns

Jared Baeten MD PhD
Departments of Global Health and Medicine
University of Washington

MTN Regional Meeting
October 2012
Contraception

• Safe and effective contraception is essential to health and development of women, children, and families worldwide

• Hormonal forms of contraception are used by >140 million women worldwide

• In many settings, the unmet need for contraception is large

• Contraceptives have known “non-contraceptive” side effects (cancer, BMD, thromboembolism)
The question

• Does using hormonal contraceptives change a woman’s risk of acquiring (or, if she is HIV+, transmitting) HIV?
The question(s)

• Does using hormonal contraceptives change a woman’s risk of acquiring (or, if she is HIV+, transmitting) HIV?
 • Is that driven by a biologic effect, or it is mediated through changes in sexual behavior? Some of both?
 • If there is increased HIV risk, is it for all contraceptives or just some?
 • If there is increased HIV risk, how to weigh that within a context of other risks incurred by changing contraceptive options/choices?
Biology
Non-human primate studies

Progesterone implants enhance SIV vaginal transmission and early virus load

Preston A. Marx¹,², Alexander I. Spira¹,², Agegnehu Gettie¹, Peter J. Dailey³, Ronald S. Veazey⁴, Andrew A. Lackner⁴, C. James Mahoney⁵, Christopher J. Miller⁶, Lee E. Claypool⁷, David D. Ho³ & Nancy J. Alexander⁸

• Summary
 • High-dose progestosterone
 • Increased SIV transmission risk >7-fold
 • Thinned vaginal epithelium (mechanism?)
 • Also resulted in higher viral load in plasma
 • For many subsequent evaluation studies of vaccines and microbicides, pre-treatment with progestin is used to enhance transmission risk.

Marx Nature Medicine 1996
Serum progestin levels in different hormonal contraceptives
Possible biologic mechanisms

- Vaginal and cervical epithelium (mucosal thickness, cervical ectopy, etc.)
- Changes in cervical mucus
- Menstrual patterns
- Vaginal and cervical immunology
- Viral (HIV) replication
- Acquisition of other STI that may serve as mediators

However, data are often sparse or potentially could point in different directions, and, most importantly, no laboratory study would be sufficient for this question....
Epidemiologic studies
Epidemiologic studies

• Some epidemiologic studies have suggested that hormonal contraceptives may alter HIV-1 susceptibility in women
 • Evidence seems strongest for injectable progestin contraception
 • Results are inconsistent and study quality varies tremendously
Published studies of injectable contraceptive use and HIV-1 risk

*Includes 2 types of injectables – DMPA and Net-En; All other studies include only injectable DMPA
Limitations

• Small sample size
• Long follow-up time between study visits
• Poor follow-up rates
• Inability to distinguish between types of hormonal contraceptives (oral v. injectable, etc.), or lack of a comparison group
• No or limited adjustment for confounding factors; insufficient adjustment
• Self-report of contraceptive use and sexual behavior
Looking at just 3 of the observational studies...

<table>
<thead>
<tr>
<th>Population</th>
<th>Results</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mombasa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavreys 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baeten 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex workers</td>
<td>OCPs HR 1.46, p=0.05</td>
<td>Sex workers</td>
</tr>
<tr>
<td>Kenya</td>
<td>DMPA HR 1.73, p<0.001</td>
<td></td>
</tr>
<tr>
<td>Rakai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiddugavu 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community cohort</td>
<td>OCP aIRR 1.12, p=NS</td>
<td>Infrequent follow-up (10-12 months)</td>
</tr>
<tr>
<td>Uganda</td>
<td>Injectable aIRR 0.84, p=NS</td>
<td></td>
</tr>
<tr>
<td>HC-HIV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morrison 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morrison 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP clinic attendees</td>
<td>Overall increased HIV for</td>
<td>Marginal statistical significance</td>
</tr>
<tr>
<td>Uganda, Zimbabwe</td>
<td>DMPA HR 1.48, p=0.04</td>
<td></td>
</tr>
</tbody>
</table>
Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study

Renee Heffron, Deborah Donnell, Helen Rees, Connie Celum, Nelly Mugo, Edwin Were, Guy de Bruyn, Edith Nakku-Joloba, Kenneth Ngure, James Kiarie, Robert W Coombs, Jared M Baeten, for the Partners in Prevention HSV/HIV Transmission Study Team*

Summary
Background Hormonal contraceptives are used widely but their effects on HIV-1 risk are unclear. We aimed to assess the association between hormonal contraceptive use and risk of HIV-1 acquisition by women and HIV-1 transmission from HIV-1-infected women to their male partners.

Methods In this prospective study, we followed up 3790 heterosexual HIV-1-serodiscordant couples participating in two longitudinal studies of HIV-1 incidence in seven African countries. Among injectable and oral hormonal contraceptive users and non-users, we compared rates of HIV-1 acquisition by women and HIV-1 transmission from women to men. The primary outcome measure was HIV-1 seroconversion. We used Cox proportional hazards regression and marginal structural modelling to assess the effect of contraceptive use on HIV-1 risk.
Methods

• Prospective cohort study of 3790 HIV-1 discordant couples from 7 countries in East and southern Africa (Partners in Prevention HSV/HIV Transmission Study)

• Quarterly HIV-1 testing, contraceptive measurement, sexual behavior questionnaire

• Adjusted analyses (age, unprotected sex, HIV+ plasma VL, pregnancy)
 – Cox proportional hazards and marginal structural models
HIV-1 acquisition

• Overall, 21.2% of HIV-1 seronegative women used hormonal contraception at least once during follow up
 – Injectable contraception used at least once by 16.0% of women
 – Oral contraception used at least once by 6.7% of women

• There were a total of 73 incident HIV-1 infections
 – HIV-1 incidence rate: 4.09 per 100 person years
Contraception and HIV-1 acquisition in women

<table>
<thead>
<tr>
<th></th>
<th>Incidence rate*</th>
<th>HR (95% CI)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No hormonal contraception</td>
<td>3.78</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Injectable</td>
<td>6.85</td>
<td>2.05</td>
<td>0.04</td>
<td>2.19</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*per 100 person years
**Adjusted for age, enrollment plasma viral load level of the HIV-1 infected partner and time dependent unprotected sex and pregnancy.

Strengths and limitations

• Strengths
 – Large cohort
 – Frequent measurement of HIV, contraceptive use and sexual behavior
 – Very high rates of follow up (>90% retention)
 – HIV negative partners knew they were being exposed to HIV & all were exposed
 – Attention to confounding factors using multiple statistical techniques (multiple additional analyses demonstrate consistent findings)
 – First report of female to male transmission and partial biological explanation from increased genital viral loads

• Limitations
 – Observational data
 – Inability to distinguish between types of injectables used
 – Limited data on oral contraceptive risk
 – Limited number of infections among those using contraception
After detailed, prolonged deliberation...

...the group agreed that the data were not sufficiently conclusive to change current guidance.

However, because of the inconclusive nature of the evidence, women using progestogen-only injectable contraception should be strongly advised to also always use condoms...

Expansion of contraceptive method mix and further research on the relationship between hormonal contraception and HIV infection is essential.
Why is this topic so difficult?
Relationship of hormonal contraception, condoms, and HIV-1
Principles of observational epidemiology

• Observational epidemiology is completely about:
 • Exposure (*contraception*)
 • Outcomes (*HIV acquisition*)
 • Confounders (*sexual behavior, etc.*)
Principles of observational epidemiology

- Observational epidemiology is completely about:
 - Exposure (*contraception*)
 - Outcomes (*HIV acquisition*)
 - Confounders (*sexual behavior, etc.*)
Principles of observational epidemiology

- Observational epidemiology is completely about:
 - Exposure (*contraception*)
 - Outcomes (*HIV acquisition*)
 - Confounders (*sexual behavior, etc.*)
Principles of observational epidemiology

- Observational epidemiology is completely about:
 - Exposure (*contraception*)
 - Outcomes (*HIV acquisition*)
 - Confounders (*sexual behavior, etc.*)
Principles of observational epidemiology

- Observational epidemiology is completely about:
 - Exposure (*contraception*)
 - Outcomes (*HIV acquisition*)
 - Confounders (*sexual behavior, etc.*)

![Diagram showing the flow of HIV exposure, infection, and seropositivity over time.]
Principles of observational epidemiology

• Observational epidemiology is completely about:
 • Exposure \textit{(contraception)}
 • Outcomes \textit{(HIV acquisition)}
 • Confounders \textit{(sexual behavior, etc.)}

\begin{center}
\begin{tikzpicture}
\draw[->] (0,0) -- (11,0) node[below] {Time \rightarrow};
\draw[->] (0,0) -- (0,-2) node[left] {HIV exposure};
\draw[->] (0,0) -- (0,-5) node[left] {Contraceptive use};
\draw[->] (0,0) -- (0,-7) node[left] {HIV infection, then seropositivity};
\end{tikzpicture}
\end{center}
Principles of observational epidemiology

- Observational epidemiology is completely about:
 - Exposure (*contraception*)
 - Outcomes (*HIV acquisition*)
 - Confounders (*sexual behavior, etc.*)

- Exposures measurement needs precision
 - Poor measurement of contraceptive exposure (both accuracy of reporting and precision of timing) risks bias towards the null
Principles of observational epidemiology

- Observational epidemiology is completely about:
 - Exposure (*contraception*)
 - Outcomes (*HIV acquisition*)
 - Confounders (*sexual behavior, etc.*)

- Outcome measurement must be done carefully. HIV seroconversion is objective, but its temporal relationship to exposures and confounders is not trivial.
Principles of observational epidemiology

- Observational epidemiology is completely about:
 - Exposure (*contraception*)
 - Outcomes (*HIV acquisition*)
 - Confounders (*sexual behavior, etc.*)

- Confounders are tough to measure
 - Particularly self-reported sexual behaviors
Limitations of secondary analyses of prevention RCT datasets

• Careful measurement of contraceptive method was not a primary goal of these studies

• *Many women in microbicide trials are unexposed to HIV and hard to know if that is related to contraceptive choice (in which case would be a huge confounder)*

• Contraception often required for study entry
 • Possibility of limited/no “control” group
 • Accuracy of exposure is a potential concern – women may inaccurately self-report use in order to stay in the trial
What do we do?
Summary of current understanding

Possible HIV-1 risk with some hormonal contraceptives + Uncertainty in data + Tremendous benefit of hormonal contraceptives

Public health conundrum
Intersection of injectable hormonal contraceptive use and HIV-1 prevalence

Most concern

What do we need to do to get a more clear answer?

• More research
 – Randomized trial
 – Observational analyses
 – Biologic studies

• More action
 – Change the method mix
 – Increase HIV-1 testing
 – More access to effective HIV-1 prevention strategies
 – Integrated family planning and HIV-1 services
Answering important questions

• Arguably, the key question here is what are the individual and public health risks and benefits for different contraceptive options:
 – HIV-1, unintended pregnancy, important side effects, related morbidity and mortality

• For women deciding among different contraceptive options, data and messaging regarding the relative risks and benefits are needed.
 – I would argue that the key questions are comparisons between different contraceptive methods – DMPA versus nothing is not really a choice.
Concluding Point

- 25 years of epidemiologic and biologic studies have attempted to assess the relationship between contraceptive use and HIV-1 acquisition (and transmission)

- For areas of highest HIV-1 risk, this question is of incredible importance.

Can we continue to make important public health decisions realizing that we may have to operate without certainty?
Acknowledgements

• Funding sources:
 • National Institutes of Health (R03 HD068143, R01 AI083034, P30 AI027757, T32 AI007140)
 • Bill & Melinda Gates Foundation

Partners in Prevention HSV/HIV Transmission Study Team
University of Washington Coordinating Center and Central Laboratories - Seattle, WA
Connie Celum, Anna Wald, Jairam Lingappa, Jared Baeten, Mary Campbell, Lawrence Corey, Robert Coombs, James Hughes, Amalia Magaret, M.Juliana McElrath, Rhoda Morrow, James Mullins

Site Principal Investigators
Botswana: Max Essex, Joseph Makhema
Rwanda: Etienne Karita, Kayitesi Kayitenkore, Susan Allen
South Africa: David Coetzee, Guy de Bruyn, Sinead Delany-Moretwe, Glenda Gray, James McIntyre, Helen Rees
Tanzania: Rachel Manongi, Saidi Kapiga
Uganda: Elly Katabira, Allan Ronald
Zambia: Mubiana Inambao, William Kanweka, Bellington Vwalika, Susan Allen