The Vaginal Microbiome & HIV-1 Acquisition

Jeanne Marrazzo, MD, MPH
UAB Division of Infectious Diseases
MTN Regional Meeting
September 2016

Discussion

- How might a healthy vaginal environment dominated by L. crispatus help protect against HIV infection?
- What is the molecular approach to defining vaginal microbiology?
- What are the implications for understanding relationship to HIV acquisition risk?
- What are the most important next steps?

Background

- A healthy vaginal environment dominated by *L. crispatus* helps protect against HIV infection
- L. crispatus can be grown and studied in the laboratory, as can some of the bacteria commonly found in bacterial vaginosis. However...
- To define the entire spectrum of bacteria in the vagina, especially anaerobes, molecular methods are needed: 16S rRNA approach

The 16S rRNA gene

- Present in all bacteria (codes for small subunit of ribosomal RNA complex, necessary for protein synthesis)
- Has properties of a molecular clock
 - rDNA sequence similarities between species correlate with evolutionary relatedness (time to common ancestor)
 - Little evidence of horizontal gene transfer or recombination
- Conserved regions: useful for broad range PCR
- Variable regions: useful for identifying species

Hierarchical Clustering of Vaginal Bacterial Communities with 16S rDNA PCR & Pyrosequencing

Contribution of Various Infections (PAR%) to HIV Acquisition Over Time

Role of vaginal microbiota in genital inflammation and enhancing HIV transmission

Jo-Ann Passmore, PhD

University of Cape Town
CAPRISA
National Health Laboratory Service

Brent Williams, PhD

Center for Infection & Immunity, Mailman School of Public Health, Columbia University

Association between genital inflammation and HIV acquisition

	HIV+	HIV-	Total
Genital inflammation present*	19	6	25
Genital inflammation absent	39	52	91
Total	58	58	116

Odds Ratio p-value

3.2 (95% CI: 1·3 – 7.9)

0.014

*Women with 5 or more **pro-inflammatory cytokines or chemokines** (MIP-1a, MIP-1b, IL-8, IP-10, TNF-a, MCP-1, IL-6, IL-1a, IL-1b) above the 75th percentile Significant after adjusting for age, urban/rural, condom use, hormonal contraceptives, number of sex acts, number of returned used applicators, HSV-2 status

Vaginal microbiome cluster CST4 is linked with genital inflammation and HIV

Prevotella bivia is strongly associated with genital inflammation and HIV acquisition

	P. bivia+ OR*	P value
HC	19.2 (95% CI: 4.0-92.4)	p<0.001
HV+	12.7 (95% CI: 2.1-77.8)	p=0.006

^{*}adjusted odds ratio

22 women were HIV positive & had inflammation – 9/22 (41%) had *P. bivia*

Women with *P. bivia* were **19 times** more likely to have genital inflammation and **13 times** more likely to acquire HIV

Vaginal bacteria associated with increased risk of HIV acquisition in African women

McClelland RS, Lingappa J, John-Stewart G, Kinuthia, Yuhas K, Jaoko W, Srinivasan S, Mandaliya K, Fiedler T, Munch M, Richardson BA, Overbaugh J, Fredricks DN

Disclosure: RSM has a research grant from Hologic Corp, paid

Vaginal bacteria associated with increased risk of HIV acquisition in African women

Background: Disruption of the vaginal microbiota associated with risk of HIV.

Methods

- Nested case-control
- Microbiota at pre-SC (N=72)
 or acute infection (N=15)
 sample vs. negative controls
- Characterized microbiota by deep sequencing and qPCR

Baseline Characteristics Median (IQR) or N (%)%

	Controls (N=262)	Cases (N=87)
Age	29 (23-36)	26 (22 - 30)
Married	199 (76%)	66 (76%)
DMPA	37 (14%)	18 (21%)
Pregnan t	57 (22%)	20 (23%)
BV	67 (29%)	32 (42%)

Overall vaginal bacterial community diversity in 57 cases versus their 57 matched controls

Shannon Diversity Index higher in cases (median 0.9, IQR 0.4-2.3) vs. controls (median 0.7, IQR 0.1-1.4), p=0.03

Adj. ORs for association between bacterial quantity & HIV acquisition 5 species associated with HIV

N=87 cases + 262 controls; undetectable compared to 1st, 2nd, 3rd tertile

Why the Difference?

- Different populations of women
 - Region; unmeasured variables
 - Exposure to male partners' microbiome
- Different techniques to define microbiome
 - McClelland characterized microbiota by deep sequencing, then used data to select bacterial taxa (some genus and some species level) to investigate using highly sensitive qPCR probes
 - CAPRISA used proteomic approach to search for bacterial peptides that were then associated with a database derived from earlier 16S rRNA work; no specific qPCR, but estimated bacterial abundance by summing protein spectral counts

What Next?

- Use VOICE repository to study relationship between vaginal microenvironment & HIV-1 acquisition
 - HIV incidence 5.7/100,000 p-y; BV 42.5 cases/100 p-y
- Nested case-control study using qPCR to target specific BVAB and lactobacilli with proteomic profiling to associations of their *presence* and concentrations with HIV-1 acquisition risk
- Define relationship between vaginal microbiome and efficacy of TFV gel in participants by assessing associations between BVAB-specific qPCR and proteomic profiling, serum and vaginal TFV levels, and HIV-1 acquisition risk

Conclusions

- A L. crispatus-dominant vaginal microbiome is associated with lower prevalence and incidence of HIV
- More research is needed on the role of BVassociated anaerobes in increasing HIV risk
- Maintenance of this environment might reduce the risk of acquiring these infections and should be further studied
 - Balkus *JID* 2016

Acknowledgements

- Slim Abdool-Karim
- Scott McClelland

Figure from

BV & Increased HIV Acquisition

- Loss of H₂O₂ (directly virucidal)
- Activation of CD4 by alkaline pH
- Upregulation of cytokines that promote local HIV replication (TNF-alpha, IL-1 beta) & increased shedding
 - HIV shedding increased with intermediate flora or BV (Rebbapragada 2008; Coleman 2007; Sha 2005; Tanton 2011)
 - Not in all prospective studies (Wang 2001; Moreira 2009)
 - Successful BV treatment: decreases in IL-1 beta, IL-8, RANTES & activated CD4 T-cells at endocervix, including those expressing CCR5 and CD69 (Rebbapragada 2008)
 - Kyongo 2015; Cone 2015

Vaginal Microbiota and Sexually Transmitted Infections That May Influence Transmission of Cell-Associated HIV Bacterial Vaginosis in HIV-Infected Women Induces Reversible Alterations in the Cervical Immune Environment

Anuradha Rebbapragada, PhD,* Kathryn Howe, PhD,* Charles Wachihi, MCChB,†
Christopher Pettengell, BSc,* Sherzana Sunderji, BSc,* Sanja Huibner, BSc,* T. Blake Ball, PhD,‡
Francis A. Plummer, MD,‡ Walter Jaoko, PhD, MBChB,† and Rupert Kaul, MD, PhD*†§

BV & Increased HIV Transmission

- Bacteria may activate Langerhans cells and CD4+ T-cells (Donoval, 2006; deJong 2009)
 - May involve direct stimulation by BVAB of relevant immune targets in male genitalia
 - BVAB / LB shared in male & female partners (Bukusi 2011; Gray 2009; Marrazzo 2009)
 - Male circumcision changes microbiota of penis, and reduces women's risk of subsequent BV (Price 2010; Gray 2008; Liu 2013)

The Microbiome & Other STI-Related Syndromes

Condition	Bacteria	References
Cervicitis	M. indolicus L. crispatus	Gorgos 2015
Urethritis	Sneathia spp	Manhart 2013
Endometritis	Sneathia spp BVAB-1	Haggerty 2016

Atopobium vaginae

