

HIV-1 Prevention and the Potential for Antiretroviral Resistance

John Mellors, MD Urvi Parikh, PhD

Outline

- Quick refresher on resistance
 - -Principles, types, major vs. minor
- What have we learned in the last year and what do we still need to learn?
 - -About resistance from oral or topical PrEP?
- Focus on resistance to NNRTIs
 - -General features
 - Dapivirine and dapivrine ring (MTN-020)

Resistance Refresher: Principles

• HIV-1 can develop resistance to any ARV

- If it's any good as an inhibitor of replication

- HIV-1 replication + drug = **resistance**
- No replication (3 drug ART) = **no resistance**
- Remove drug, resistance decays but...
 - Depends on mutation and drug

-184V(3TC/FTC) = fast vs. 103N(NNRTI) = slow

Types of Resistance

- Transmitted Resistance
 - -Person is infected with resistant virus
 - Never exposed to ARVs
 - Partner rec'd ART, sdNVP or PrEP
 - Or, partner infected with resistant virus from a another partner: a "secondary" transmission
- Selected Resistance (most common)
 - -Infected with wildtype virus
 - -Resistance selected by sdNVP, ART, or PrEP

Major vs. Minor Resistance

- Major
 - $\ge 25\%$ of virions in a person are resistant
 - -detected by standard population genotype
- Minor
 - -< 25% of virions in a person are resistant</p>
 - -missed by standard genotype
 - -detected by ASP, SGS, deep sequencing

What Have We Learned in 1 Year?

• No infection on PrEP, **no resistance** ③

- CAPRISA, iPrEX, TDF2, Partners PrEP

- No PrEP exposure, rare resistance but infection (8)
 - iPrEX, TDF2, Partners PrEP, FEM-PrEP

HIV-1 Drug Resistance from PrEP

 Infrequent cases of drug resistance among PrEP study participants who <u>seroconverted while receiving</u> active drug

Study	Infections on Study						
	# infected	# resistant to FTC or TDF					
iPrEx	131	None					
Partners PrEP	82	None					
TDF2	33	1 placebo (K65R <1%)*					
FEM-PrEP	68	1 placebo (M184V)* 4 FTC/TDF (M184V/I)**					

- * Transmitted (primary) resistance can occur independent of PrEP, which likely explains resistance in the placebo arm
- ** 1 probable and 2 possible transmitted resistance; 1 uncertain timing of infection (HIV RNA detectable at first follow-up visit)

Infrequent Drug Resistance

- Why?
 - Risk of infection and drug exposure are **inversely** related
 - No or low drug exposure, no selection by drug, no resistance, but infection
 - Good exposure \rightarrow **no infection & no resistance**

Resistance is still possible

- At drug exposures that permit infection but also provide selection of resistant variants
- Appears to be uncommon

Theoretical Infection-Exposure-Resistance Relationships HIV infection **Resistant infection** 1.0 No Drug

Theoretical Infection-Exposure-Resistance Relationships

Theoretical Infection-Exposure-Resistance Relationships

What Have We Learned in 1 Year?

- Resistance more likely if PrEP given during unrecognized acute infection
 - iPrEX, TDF2, Partners PrEP, FEM-PrEP

Resistance <u>More Likely</u> if PrEP is Given During Unrecognized Acute Infection*

Study	Baseline infections						
	# infected	# resistant					
iPrEx	10	2/2 active (M184V/I) 1/8 placebo (M184V)					
Partners PrEP	14	2/8 active (1 K65R, 1 M184V)					
TDF2	3	1/1 active (K65R, M184V, A62V)					
FEM-PrEP	2	0/1 active					

*Infection + incomplete suppression of replication selects resistance Transmitted (primary) resistance can occur, independent of PrEP, which likely explains resistance in the placebo arm

What Have We Learned (con't)

- Topical PrEP (TNV gel), no systemic resistance
 - CAPRISA 004
 - No major or minor resistance
 - Relevant for MTN-020 (dapivirine ring)

What Have We Learned (con't)

- Resistance from ART is common
 - 15-20% of first-line therapy
 - Evidence of spread: prevalence pretherapy has increased in some countries from <5% to >12%
 - Uganda, Cameroon

Hamers et al., Lancet Infectious Dis 2011

What do we need to Learn?

- What level of PrEP exposure, if any, results in infection + resistance?
- What is the significance of minor resistance
 - -Thought we knew but...

A5208 Trial 1 (sdNVP): Risk of Failure vs. Mutation Frequency by Allele-Specific PCR

Mutant Frequencies

A5208 Trial 2 (no sdNVP): No Increased Risk of Failure vs. Mutation Frequency by Allele-Specific PCR in the NVP Arm

Not All Minor Resistance is the Same

- Minor drug resistance after sdNVP is associated with increased risk of failure of NVP-containing ART
- Spontaneous, pre-existing resistance is <u>not</u>
- So, if we detect minor resistance in a person with uncertain prior drug exposure (e.g. PrEP), we don't know its significance

– Working on additional ways to distinguish risk

NNRTIS and NNRTI Resistance

General Characteristics of NNRTIs

- Hydrophobic (water fearing) molecules
- Bind to a hydrophobic "grease pit" in HIV-1 RT near the catalytic site called the NNRTI binding pocket
- Inhibit RT function by multiple mechanisms
 - Distort the active site
 - Alter primer binding
 - Freeze RT in the open (non-catalytic) position

Structure of HIV-1 Reverse Transcriptase

FDA-approved NNRTIs

• First generation

-Delavirdine, Nevirapine, Efavirenz

Second generation

-Etravirine (TMC-125), Rilpivirine (TMC-278)

Structures of FDA-approved NNRTI

Multiple NNRTI Resistance Mutations

	-		L	ĸ	K	۷	V			Y	Y	G	Р
Efavirenz		1	00 1	101	103	106	108			181	188	190	225
			I	Р	N S	М	I.			C I	L	S A	н
	V	А	L	Κ		۷		E	V	Y		G	М
Etravirine ⁿ	90 9	98 1	00 1	01		106		138	179	181		190	230
	I	G	*	E H P *		I		AG K Q	D F T	C* * V*		S A	L
			L	Κ	Κ	۷	V			Y	Y	G	
Nevirapine		1	00 1	101	103	106	108			181	188	190	
			I	P	N S	A M	I			C I	C L H	Α	
				Κ				E	V	Y			H F M
Rilpivirine°			1	01				138	179	181			221 227 230
				E P				A G K* Q R	L	C I V			Y C I L

Johnson et al., IAS USA 2011

General Features of NNRTI Resistance

- The "grease pit" is not conserved
- Mutations decrease NNRTI binding
 - Direct loss of hydrophobic interaction (Y181C)
 - Closing of entry to the pit (K103N)
 - Steric hindrance (G190E)
- Some mutations have minimal effect on fitness
 - May persist after drug is withdrawn (K103N)
- Cross-resistance is common among NNRTI
 - Extensive for 1st generation
 - Less between 1st & 2nd generation but still problematic 27

Dapivirine is an analog of ETV and RIL and binds to the same pocket. Figure shows overlay of the 3 drugs

Cross	Resist	ance	EC ₅₀ in µM								
01000	Compound Chemical structure		Wild-type	K103N	Y181C	K103N/ Y181C	L100I	L100I/ K103N			
	TMC278		0.0004	0.0003	0.0001	0.0008	0.0005	0.008			
	TMC125		0.002	0.001	0.006	0.005	0.003	0.01			
TMC120 \downarrow		0.001	0.004	0.008	0.044	0.016	>10				
	Efavirenz		0.001	0.039	0.002	0.04	0.038	> 10			
		0.016	>1	>1	>10	>1	N/A				
	Nevirapine		0.085	> 1	> 1	>100	0.6	N/A			
							Dac	stal DNI			

Das et al. PNAS 2008

Dapivirine (TMC-120) Ring

Advantages

- Very potent inhibitor of HIV-1 ($EC_{50} = 1 \text{ nM}$)
- Local delivery, so systemic resistance unlikely
- Very high local concentrations may inhibit resistance development <u>as well as NNRTI-resistant</u> HIV-1 that comes from an infected partner

Dapivirine (TMC-120) Ring

- Potential limitations
 - Not active against high-level NNRTI resistant variants from a source partner
 - Uncommon now but could increase
 - Selection of resistance in the GT of INFECTED women
 - Theoretically transmissible
 - Resistance likely to be minor so more difficult to detect
 - MTN Virology Core will be prepared!

Take Home Messages

• Don't give PrEP (Dapivirine Ring) to HIV+'s

- Screen carefully for acute infection

- Look hard for minor drug resistance among seroconverters in MTN-020/ASPIRE
 - Comparisons with placebo arm are key
- Monitor prevalence of NNRTI resistance in ART- naïve and -experienced persons in RLS
 - Transmission of NNRTI-resistant virus is likely to increase
 - Potential for dapivirine ring breakthrough exists

Acknowledgments

<u>U of Pittsburgh</u>

Francis Hong

Elias Halvas

Nic Sluis-Cremer

<u>NCI</u>

Valerie Boltz John Coffin

Mary Kearney

Harvard School of <u>Public Health</u> Evelyn Zheng Michael Hughes

The women in Africa who participated in A5208 and the 10 study sites

HIV Drug Resistance Program

National Cancer Institute at Frederick

Any Questions?